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ABSTRACT

This paper studies prediction of future failure (rates) by hierarchical empirical Bayes (EB) Poisson
regression methodologies. Both a gamma distributed superpopulation as well as a more robust V
(long-tailed) log student-t superpopulation are considered. Simulation results are reported
concerning predicted Poisson rates. The results tentatively suggest that a hierarchical model with
gamma superpopulation can effectively adapt to data coming from a log-Student-t superpopulation
particularly if the additional computation involved with estimation for the log-Student-t
hierarchical model is burdensome.

1. INTRODUCTION
The following model often provides a useful place from which to

commence the analysis of point event process data. First, suppose there is a
set of I entities or units, each of which generates ait observed history of point
events. Take each describing point process to be homogeneous Poisson (Xi), i
= 1, 2, 3, ..., I. The observed data appears as (si,ti), si being the number of

events for process i over active or operating time ti. Also observed are certain
fixed explanatory variable values; xij, j = 1, 2, ..., p, associated with Xi. In some
literature, e.g., Everitt (1984), such variables are called manifest. Second,
there is a latent quantity, 8i, associated with Xi, that is unobservable but
influences Xi behavior. It is convenient to view Si, at least provisionally, as
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being drawn randomly from some superpopulation of values and held fixed

thereafter, thus endowing Xi with its own particular individuality.

We call such a setup hierarchical, and ask it to furnish insights and

numbers concerning (a) the individual rate values, ki, (b) the influence of the

explanatory variables upon these rates, and (c) the nature of the

superpopulation that gives rise to the latent variable values; future values of

the rates, e.g., X1+ 1 , etc., may be viewed as coming from such a population, at

least to a first approximation.

The above model suggests itself for many purposes, one in particular

being in risk analysis, e.g., of nuclear power plant safety systems. Such setups

are also natural in other reliability-related areas as well, particularly in ones

arising in the military. Application may perhaps be made to data reflecting

"human unreliability," i.e., the propensity of different individuals to make

errors, or experience accidents.
The purpose of this paper is to describe methods for fitting various

hierarchical models to the type of data described. Particular attention is

devoted to the prediction problem: given the past record of an individual

item (e.g., human being), how well can one predict its (her) future

performance, even if some basic conditions change?

2. THE FORMAL MODEL

The formulation proposed can be written as follows: for i = 1, 2, ..., I, and
= l p2 .._., p)T

= f(xi1,i), (2.1)

si I ,i,ti-Ind. Poiss(ki ti);

= (01, 02, ..., Or) being a parameter identifying g, the density associated with

the assumed fixed superpopulation. In what follows we concentrate on

certain parametric forms for the link function f and the superpopulation g,

and aim at estimating the Q-value best representing the superpopulation

giving rise to the apparent X-values. For various reasons, convenience and

tradition being influential, we restrict attention to the log-linear model

k, = f(xi,5i) = exp(_x&+ 5i). (2.2)

As suggested earlier, the objectives of the analysis will be several-fold, but an

important one will be to estimate an individual ki-value, i.e., the actual

realization of Xi that prevails. An even more important objective is to predict
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the nuonber of future events associated with i, Si(t). This entails finding an
A A

estimate 11 and one for the individualizing parameter 6i, namely 8i.
Estimation will be carried out by assuming that g(.,Q), the superpopulation

density giving rise to 8i, is one of a specific parametric family, and first

estimating the parameters of that density along with the regression
A A

parameters. At a later stage, the estimated parameters a and 0 are utilized to

create estimates of 8i, and finally ki, see Cox and Hinkley (1974), p. 401, Morris
(1983), Deely and Lindley (1981), etc. The several-stage or hierarchical analysis

is referred to as parametric empirical Bayes (PEB).

This work is an extension of Gaver and O'Muircheartaigh (1987) in which

discrepancy-tolerant (robust) estimates of 8i and X were produced and
evaluated without consideration of explanatory variables. The major
purpose of the present article is to consider the effect of explanatory variables

in the context of hierarchical models using quite different models for

superpopulations: first, the simple conjugate Gamma, and next the log-

Student t with a small number of degrees of freedom so that tails are

extended, and outliers more apt to be generated.

3. AN EMPIRICAL BAYES APPROACH
The approach taken to providing estimates is traditional; see Berger (1985,

Chap. 4). We first remove the condition on 8 for each item to obtain the

unconditional likelihood

S' tst) F e - f(.),(( 1  -),)~g(8; )dt5. (3.1)i=1

A A

The latter is then maximized with respect to a and 0 to produce 3 and Q.

These quantities are then inserted into the expression for the posterior
density of 8,

where the constant Ki is a normalizing factor. A point estimator of ,i is taken
to be the posterior mean (other options of course available),

3(3.2)
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where i is the value of the explanatory variable for conditions anticipated

when the estimate is to be applied; if i. = x then we have ii, an empirical

Bayes estimate of ki, for conditions under which the data were taken; this will

often be a shrunken estimator that has a smaller mean-squared error than

does a simple individual estimator. If i. refers to other (e.g., future)

conditions then i calculated by (3.2) may be called the mean predictive rate.

If more information is desired then the entire predictive distribution is

needed:

= Je(~i~S)I ~ ,g~()d8(3.3)

this approximates the conditional probability of 9i future events for item i,

given that it is exposed for time ti and under conditions xi .

It is apparent that the approximation so obtained may be under-variable,

in that it treats 4 and 6 as fixed and known in (3.2) and (3.3). The

hierarchical Bayes analysis described by Berger (1985, Chap. 4) is a substitute

that avoids that criticism. This defect is undeniable, but some appreciation

for the magnitude of the effect can be obtained by bootstrapping. Of more

concern to us has been investigation of the effect of superpopulation model

choice: how different can actual prediction be in simple situations modeled
quite differently? We proceed to compare and contrast two models, one

conjugate Gamma and the other longer-tailed and hence outlier-prone.

4. GAMMA LATENT VARIABLE POISSON REGRESSION (GALVPR).
It is conventional and convenient to invoke the gamma density to

represent the random effect in (2.1); see Lawless (1987 a,b) and Anscombe

(1950) for examples. Thus

g(u; a) = e- ul a (u / a)a-1 - .

F(a- 1 ) a

is the superpopulation model, from which

E[81 1 (4.2)
Var[8] a.
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Lawless (1987b) gives expressions for the In-likelihood and its derivatives for
this hierarchical model. It turns out, however, that a more satisfying
parameterization is in terms of O=ln a when the mle stage is undertaken.
Since a one-parameter gamma density is used, the regression has a constant
term; that is Xil =1. For convenience we provide expressions for the In-
likelihood and its derivatives using our parameterization.

In the present parameterization, then,
X, = U exp x[_qi] (4.3)

so exp(8) = U is gamma. In order to form the likelihood element in (3.1) it is
only necessary to integrate to obtain the explicit form

L(A ,R = tl =ec t +1-t i (ct i +) (4-4)-,",,:,', i l ISi!Fr(e-" ( e~cit ,)  + 1) e CAt +l j I

where c, = exp{r 0}. The log-likelihood is

I(6n(s +)o lI(n + si [lnciti - In(e citi + )]-e- ln(eOciti +1)/(_0fl~~t)= 1 i=n1 0 e )  ls

(4.5)

si -1

where Iln(1 + jeo ) = 1 if s, = 0.
j=0

The following derivatives can be obtained.

dl = j _ +- ] + ln[eOciti + ]- citi (4.6)
dO j= j=0 + eeO citi + 1

( 1 2! +___]___ ct ' eO]
d 2  -d +e " I2 _2e ln[e ct, + 1]+2 ct,e-2 0 +(. qCt,+ )[S + e f8
do , do ° 1+je  ect,+l e iec + 1

(4.7)

dl [Si- cti(48
d-k = Le cit i+ x (4.8)
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A2 I [sieOciti +citi(= -E -2xijxik

dJ~kdI~j i-1 (eociti+1) 1(4)

where the summations involving si-1 are set equal to zero when si=O.

Further,

E[3-dJ3 ]2 1  + Ci%i k (4.10)

A Newton-like iterative procedure is used to solve the system of

equations

dl

0 dl (4.12)

If si is large then evaluating the sums appearing in (4.5), (4.6), (4.7), (4.13)

and elsewhere tends to be time-consuming. However all such sums are well-

behaved (of monotonic formations) and can be well-approximated by
integrals. This feature is not, but easily can be, included in our programs.

If {fk) were known, then a Newton procedure to estimate 0 would be to

recursively solve the linear equation

O= ( (dl =di l (21 le = IO9
96 dO = Yd0 '90) (412

dl
where 00 is a current estimate of 0. Note that if 6 = 0, then

= g(O) = e28 
I 

jeo -2e In[e +11 (4.13)

Hence, (4.12) can be rewritten as
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0- 001]+e 20 In e 0 ct +1- 0 i si +ee l1 0 1+ je ec,, +,

(lll

x ee )21+ 2e~ -3 n[eecii + 1i 2citie _20 Ci;[2si +e011
j=-O l+jeo e Cit 1+l ke ctI+1

(4.14)

To obtain an initial estimate of 0, note that, letting Ni(ti) denote the ith

random variable of the number of observed events,

E[N,(t,)] = ct, ; (4.15)

Var[N,(t,)] = c 1,,[+cte (4.16)

Thus, [(Ni(ti) - cit)/ jit] has mean 0 and variance [1 + citiee]. We propose

starting the iterative procedure to find 0 by computing

= c~-~" (4.17)

If i' 1, then a log-linear model is used to describe the data. If in > 1, then

the initial estimate of 0 is

0o = ln ( - 1) c t (4.18)

If 0 were known, then {k) could be estimated with generalized linear

model software in the following manner, (cf. McCuliagh and Nelder [i983,).

A Newton iteration to solve the equations 0 =d is to solve the system of
dIlk

equations

0=( dl =(E[ d ]ii (4.19)

where V is the current estimate of 1.
Put
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e C,t,:w, =FLe cit +lJ (4.20)

where ci = exp{_xjaO.
Equation (4.19) can be rewritten as

0 1 IYi - U j,,,j ik (4.21)

k= 1,..., p

where

y [s, - c,t,I[ct,(ec,t, + I  (4.22)

and

U, X ,x 1. (4.23)

The equations of (4.21) are the normal equations for a least squares regression.
The following is an iterative procedure to obtain estimates of 0 and (Pk)

a) Fit a log-linear model stopping after one iteration

1. Start with

Xi"= In[(Si + /ti]
xi 2

2- Solve the equation (4.21)

with

2

W, = [sil +  ;

U', = W,X,;

-W, - W, X,_ .

Y' = wW,2;J+

b) Find the initial estimate of 0 by evaluating (4.18). If m<_1, use the log-
linear model of a) to describe the data.

I. Next estimate fPk): Evaluate and solve equations (4.20) - (4,23).

8



II. Next estimate 0: Evaluate and solve equation (4.14).

111. Continue alternating between I and II until convergence.

In the simulation experiments described in Section 7 the above-obtained

estimate of 0 occasionally either cycled among negative values or became

very large and positive. In these cases II was replaced by a search of the

marginal likelihood for 0 with fixed (k).

5. ROBUST HIERARCHICAL POISSON REGRESSION (ROLVPR): THE

LOG-STUDENT t SUPERPOPULATION
As an alternative to the GALVPR model, allow 8 to have the Student t

density

g(6; rd) C() d+1 (5.1)
(1 + 6/ T2) _

this distribution is adjustably longer-tailed than is the log-Gamma

distribution (for 6) of the previous model, and hence better represents

outliers and extreme extra-Poisson variability. The parameter d is the

"degrees of freedom" for the Student t; for the present purpose a 3ow value of

d (e.g., d = 3-5) is useful. The Student-t model for log failure rate was

introduced in Gaver and O'Muircheartaigh (1987). There it was pointed out

that the marginalization step of (3.1) could be performed using Gauss-

Hermite numerical integration; see Naylor and Smith (1982). In this paper

we employ a variant of the GCass-Hermite technique that involves an initial

correction by Laplace's method.

The procedure currently adopted for fitting the regression parameters t

in addition to the Student t parameter r proceeds iteratively: first explain as

much item-to-item variability as possible by suitably weighted regression,

then alter the model to approximately adjust for regression effects and apply

the methodology of Gaver and O'Muircheartaigh (1987) to estimate E2. This

value then provides refined weights for a new regression. We speak of

rocking back and forth between the regression and latent variable stages.

5.1. Rocking Algorithm when 6i - Student (4, %, d)

Here is how the above procedure operates when latent variables are

Student t so as to represent adjustably long-tailed outlier-prone regressions; d

> 1 is a tuning parameter with Var[8] = t2d/(d-2) if d > 2.

a) Regress yi(l) = " ln(si/ti) on x(5.1)

9



A

Replace si/ti = 0/ti by 1/3ti. Obtain a(1).

b) In the ith likelihood component obtained by integrating out with

respect to the 8i-distribution,

L,. I r lcIt) eL~~t X~)' ~ ) d1d5.2)

- ~ [+ (Z 2 / rd)f] 2

where

In i(z) = lip+ z, (5.3)

replace t1 by tie!,(l) = t(1). Now numerically optimize (5.2) by choice of

r = i2); /(1) is a moment estimator. Details of the likelihood integral

approximation and optimizations are furnished in Section 6.

-1 
-1

c) Regress Yi(2)= + j2(2)dd )2 In (slti) on (I+ 2( 2 )d x i

where ti and s, are the original data values. Obtain 1(2).

d) In step b above replace ti by tie- and xi by xip(2) and again

numerically optimize to find N(3).

e) Return to step c) with Fi(3).

0 Continue to convergence of {~k)1,{i2(k)1.
The above procedure converges rapidly in our experience, giving results

in close agreement with the simultaneous optimization of the likelihood

with respect to T and 3. The latter is a much more computationally

demanding procedure than is rocking.

6. LIKELIHOOD COMPUTATION
An essential part of the preceding algorithm is the numerical evaluation

of likelihoods of this form:

L( _;(s,t)) = HL,(r 2;s,,t,), (6.1)
i=1

where

10



Li r 2S t f -;, ()ti[AiZ~l8iC(d) d
g i(2 ;s1 ,t) = s! [1+Z 2 / T2ad](d ' ' 2  T- z

-Qf e (z)dz. (6.2)

Under the log-linear model

InA (z) = xi+ z (6.3)

so

Qi(z) = .i(z)ti-silnAi(z) + j l n[i + z2 /, 2d] + in T, (6.4)

omitting irrelevant constants. In order to evaluate the integral in (6.2)
approximately but reasonably accurately we apply either (a) a version of

Laplace's method, in which Qi(z) is approximated by a quadratic and

integrated explicitly; alternatively (b) apply a refined version of (a) involving

Gauss-Hermite integration of the error resulting from the quadratic

approximation to (6.3). Here is a sketch of the process. In what follows we

will modify the time to be tie J .

6.1. Laplace Method, and a Refinemett.

To compute L, = Je-Q(z)dz, the ith likelihood component, we begin by

approximating Qi by a quadratic as follows. Since Xi = ez, ti is modified as

indicated above, and

-Q,(z) = -A.it, ++snA -+1 ln(1 + z2 / r2d) - Inr,
2

dQ = eZt + si d+(6.5)dz - d, )[1+ z2/ r2a] ,

-ezti + s, - w(z)z / T2

where

w(z) =--d - [I+ z' / *'d]

is considered to be a weight. Now -dQi/dz=O entails the equation

11



d+1
e" 1 i z -d- (6.6)

ti + 1 + z / rd]

Equation (6.6) may have two solutions. We obtain a single reasonable
approximate solution to (6.6) as follows: An initial solution to (6.6) is

z,(O) = In(s/ ti) if s, > 0,
(6.7)

zi(O) = ln(1 3ti) if si = 0;

other replacements for the zero count situation are possible.

Let j be the solution to the equation

e= 1[ - zw(z1 (0)) / r']tj

after one Newton-Raphson iteration starting at zi(O).

Next evaluate an approximation to Q'(zi). First approximate

Q,(z) = ezt, - s, + w(zi)--. (6.8)

Hence,

Q 't, 2 w( 1 )--. (6.9)

Finally approximate egi by si/ti resulting in the approximation

QI'( ,) = Si + w (g,)-. (6.10)

Write

Q, (Z) Q, y) + (Z _ ji2Q i) + Ri (z); (.1
2

Laplace's method assumes that Ri(z) is negligible and hence

12



L'.('r2;Si, ti) f -eQ(z)dz

e- fs _2 dz (6.12)

so the log-likelihood

IF 1 (Yi

S i nii + 2 (6.13)

which can be numerically optimized by choice of .12 for fixed tuning constant
value d (in principle optimization on d can also be included).

Improved numerical results have been achieved by writing

L T2 si t fe- Q(z)dz
(6.14)

-O eQ)2/ Q " (i)Jf 2 e-Ji'(w)dw

with

Ri* (w) = R,(2 2/ Q;'( .)w+ 1 ) (6.15)

Ri(w) being defined by (6.11). The integration is then performed by Gauss-
Hermite technique, i.e., by replacing the integral by a finite sum at points wi

determined by zeros of the Hermite polynomials; see Abramowitz and Stegun
(1964). Experience has shown that the above produce numerical results that

agree well with other numerical methods such as that of Naylor and Smith

(1982); however, the unadorned Laplace, (6.12), may sometimes be satisfactory,
and is certainly more quickly computed, which is a virtue if bootstrapping is
undertaken.

Alternative computational procedures exist and have virtues. The
Newton-like iteration applied to the Gamma model of Section 4 can be

adapted to the log-Student model, but we have not undertaken this as yet. A
sampling-based approach of Gelfand and Smith (1988) is a natural option, but

at present appears unnecessarily computer-intensive. As will appear, even

the apparently crude rocking approximation proposed leads to interesting
contrasts between predictions made by the conventional conjugate Gamma
and the robustifying Student.

13



7. NUMERICAL ILLUSTRATIONS
In order to illustrate the performance of the two proposed prediction

schemes we have performed extensive simulations. These illustrate the
anticipated comparative performance of GALVPR and ROLVPR: the latter is
often better able to adapt to the appearance of large outlier rates by refusing to
shrink them down as extensively as do the former. The difference between
the predictions made by the two schemes is less noticeable for small rates;
here the behavior of the gamma-based approach, GALVPR, may actually be
superior, probably because of the approximations made when implemeiLuig
the Student ROLVPR model. Improvements in the current procedure for
fitting the latter, e.g., when counts are zero, are likely to show up as reduced

upward shrinkages.

Simulation Experiment
The present simulations are all based on a group of 1=20 items. For the

log-linear rate of (2.2) xi = 01 + 32xi, and xi = +1 for i = 1, 2, ..., 10, xi = -1 for i =
11, 12, ..., 20. In addition P31=0.5 and 02 = 0.1 and 0.3, while ti = 2 throughout.
For each experiment 20 Poisson rates were then generated from the Student
model with T = 1.0 and d = 5, and for each rate a single Poisson data point was
generated with mean kiti. These then constitute the observed counts from
which predictions are made. Each prediction is viewed as a point estimate of
the underlying Poisson mean giving rise to the corresponding observed
count; it is a natural point estimate for a future count. The predictions are

chosen to be the means of the posterior distributions from the GALVPR and
ROLVPR model specifications, where each model is fitted to the data (20
counts, plus values of xi) for the particular experiment, meaning that ji, i = 1,
2, and a, for GALVPR, and r2, ROLVPR were estimated as described earlier.
These models were actually fitted by two methods: (a) to all count data in the
experiment, including that for the item whose rate is predicted, and (b) to all
data, but omitting the observation for the item to be predicted, i.e., in cross-
validation mode.

An illustration of a particular experimental outcome, and the
corresponding predictions appears in Table I. Note that for this particular
data set the average mean square error of ROLVPR no-cross-validation
predictions is the smallest. This is not always so; see the figures for

comparisons of mean-squared-errors for the two shrunken predictions, and
raw predictions.

14



TABLE I
SAMPLE COMPARISON OF RATES AND ESTIMATES

p1 = 0.5, 2 = 0.1, T = 1, d = 5

Number Co- Ob- True Raw No Cross- Cross-validation
variate served validation

i i 2 i ).i(raw) ;Li(GA) ).i(Stu.t) Xi(GA) Xi(Stu.t)
1 +1 152 87.57 76.00 74.56 76.28 53.56 73.68
2 +1 3 1.44 1.50 1.66 1.62 1.66 1.66
3 +1 2 0.47 1.00 1.17 1.23 1.17 1.26
4 +1 2 3.51 1.00 1.17 1.23 1.17 1.26
5 +1 0 0.65 0.00 0.19 0.47 0.21 0.52
6 +1 0 0.16 0.00 0.19 0.47 0.21 0.52
7 +1 5 2.07 2.50 2.64 2.45 2.63 2.48
8 +1 3 2.07 1.50 1.66 1.62 1.66 1.66
9 +1 8 1.20 4.00 4.10 3.76 4.10 3.77

10 +1 1 1.11 0.50 0.68 0.85 0.68 0.86
11 -1 9 2.87 4.50 4.31 4.15 4.28 4.16
12 -1 2 0.80 1.00 1.10 1.19 1.10 1.19
13 -1 3 0.43 1.50 1.56 1.59 1.56 1.57
14 -1 0 1.22 0.00 0.18 0.46 0.19 0.52
15 -1 9 5.44 4.50 4.31 4.15 4.28 4.16
16 -1 7 3.18 3.50 3.40 3.26 3.38 3.27
17 -1 11 5.40 5.50 5.23 5.10 5.16 5.08
18 -1 0 0.40 0.00 0.18 0.46 0.19 0.52
19 -1 3 0.66 1.50 1.56 1.59 1.56 1.57
20 -1 0 0.03 0.00 0.18 0.46 0.19 0.52

MSE's 7.83 9.16 7.34 58.94 10.61

TABLE 11
SAMPLE COMPARISON OF RATES AND ESTIMATES

= 0.5, P2 = 0.1,g = 1,d = 5
Observed True Raw No Cross- Cross-validationvalidation

hi ?-i ,i(raw) Xi(GA) ;.i(Stu.t) Xi(GA) ),i(Stu.t)
267 138.43 133.50 132.11 137.56 101.48 130.66

0 0.01 0.00 0.17 0.48 0.19 0.51
3 1.35 1.50 1.65 1.64 1.65 1.65

12 6.55 6.00 6.10 5.62 6.10 5.59
0 0.29 0.00 0.17 0.48 0.19 0.51
2 2.21 1.00 1.16 1.25 1.16 1.25
2 1.32 1.00 1.16 1.25 1.16 125
5 3.47 2.50 2.64 2.46 2.64 2.48
0 0.57 0.00 0.17 0.48 0.19 0.51
2 0.98 1.00 1.16 1.25 1.16 1.23
7 2.18 3.50 3.52 3.42 3.52 3.39
3 0.47 1.50 1.60 1.71 1.60 1.71

36 20.25 18.00 17.41 17.48 16.91 17.40
4 1.68 1.00 1.12 1.31 1.12 1.32
2 3.72 2.00 2.08 2.12 2.08 2.12
0 0.39 0.00 0.17 0.51 0.18 0.58
6 2.28 3.00 3.04 3.97 3.04 2.%
2 1.48 1.00 1.12 1.31 1.12 1.32
9 2.40 4.50 4.58 4.30 4.48 4.29

10 4.46 5.00 4.% 4.76 4.95 4.77
MSE's 2.22 2.90 1.06 69.51 4.09

NOTE: this is an independent experiment from the same setup as that of Table 1.
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Table II provides another illustration of the estimates' performance, this time

with fewer extreme outliers. Figure 1 exhibits histographs of the mean-
squared error difference, MSE(ROLVPR)-MSE(GALVPR), for 100 replications
of the above specific simulation. Note that the advantage is in favor of
ROLVPR in the majority of the experiments, with an exceptional advantage

displayed in some cases. Often it is in a few cases of exceptionally large rates,

and counts, that ROLVPR excels. Figure 2 compares the mean-squared errors
of each shrunken no-cross validated estimator with the corresponding mean
square error of the raw-rate estimators; the raw rate estimator is simply the
count divided by ti = 2. For these data sets the indications are that RULVPR
improves upon RAW most of the time when P2=0.1 and when 32=0.3
(although less decisively), while RAW improves upon GALVPR most of the

time; neither victory is decisive. These results are perhaps not surprising

when one refers to Morris (1983), Theorem 1 and subsequent discussion. It
appears that the convenient conjugate can adapt to non-gamma data quite

well in many of the present cases at least.

An undoubted disadvantage of the ROLVPR procedure is its computer

intensivity: computation of its estimators requires far more time than does

GALVPR because a root must be found, (6.6), and a numerical integration

performed. Search is on for a more tractable representation of a "robust g"
that permits analytical rather than computational evaluation. The inverse
Gaussian is a candidate; see Dean et al., (1989). Conceivably such an adoption
will result in better results for small-rate situations. Needless to say RAW,
which quotes Xi(RAW) = si/t i is by far the most economical. Of course it may

not be used if the covariate value, xi, changes.
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